Superlinear Lower Bounds for Distributed Subgraph Detection

نویسندگان

  • Orr Fischer
  • Tzlil Gonen
  • Rotem Oshman
چکیده

In the distributed subgraph-freeness problem, we are given a graph H , and asked to determine whether the network graph contains H as a subgraph or not. Subgraph-freeness is an extremely local problem: if the network had no bandwidth constraints, we could detect any subgraph H in |H| rounds, by having each node of the network learn its entire |H|-neighborhood. However, when bandwidth is limited, the problem becomes harder. Upper and lower bounds in the presence of congestion have been established for several classes of subgraphs, including cycles, trees, and more complicated subgraphs. All bounds shown so far have been linear or sublinear. We show that the subgraph-freeness problem is not, in general, solvable in linear time: for any k ≥ 2, there exists a subgraph Hk such that Hkfreeness requires Ω(n2−1/k/(Bk)) rounds to solve. Here B is the bandwidth of each communication link. The lower bound holds even for diameter-3 subgraphs and diameter-3 network graphs. In particular, taking k = Θ(log n), we obtain a lower bound of Ω(n/(B log n)).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lower bounds on the signed (total) $k$-domination number

Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...

متن کامل

Radial Basis Function Neural Networks Have Superlinear VC Dimension

We establish superlinear lower bounds on the Vapnik-Chervonen-kis (VC) dimension of neural networks with one hidden layer and local receptive eld neurons. As the main result we show that every reasonably sized standard network of radial basis function (RBF) neurons has VC dimension (W log k), where W is the number of parameters and k the number of nodes. This signiicantly improves the previousl...

متن کامل

The Minrank of Random Graphs

The minrank of a graph G is the minimum rank of a matrix M that can be obtained from the adjacency matrix of G by switching ones to zeros (i.e., deleting edges) and setting all diagonal entries to one. This quantity is closely related to the fundamental information-theoretic problems of (linear) index coding (Bar-Yossef et al., FOCS’06), network coding and distributed storage, and to Valiant’s ...

متن کامل

Bounds on the restrained Roman domination number of a graph

A {em Roman dominating function} on a graph $G$ is a function$f:V(G)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}A {em restrained Roman dominating}function} $f$ is a {color{blue} Roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} The wei...

متن کامل

Quantum Algorithms and Lower Bounds for Independent Set and Subgraph Isomorphism Problem

The study of the quantum query complexity for some graph problems is an interesting area in quantum computing. Only for a few graph problems there are quantum algorithms and lower bounds known. We present some new quantum query and quantum time algorithms and quantum query complexity bounds for the maximal and maximum independent set problem and the graph and subgraph isomorphism problem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.06920  شماره 

صفحات  -

تاریخ انتشار 2017